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Abstract. We show that the SU(3) coupling scheme reproduces the data for E2 transitions in N = Z

even-even nuclei both of the sd and the pf shells. The SU(3) results are compared with large-scale shell
model calculations. Along the ground-state band-like structures, the increase of the B(E2) values with
spin toward a maximum value and the subsequent fall with further increasing spin are reproduced rather
well. The role of the quadrupole-quadrupole term of the nuclear residual interaction is stressed.

PACS. 21.60.-n Nuclear-structure models and methods – 21.60.Fw Models based on group theory –
23.20.-g Electromagnetic transitions

1 Introduction

Nuclei with equal number of neutrons and protons (N =
Z) are of particular interest in the study of systems near
the limits of stability. A valid question is whether model
interpretations developed for light nuclei can be applied
to heavier regions.

Such is the case of the models founded on the SU(3)
classification of the many nucleon wave functions [1] that
give a microscopic interpretation of the nuclear rotations
on the basis of the exact treatment of the quadrupole-
quadrupole residual interaction. The SU(3) scheme was
successfully used at the beginning of the sd-shell within a
L-S coupling. Beyond that region, the spin-orbit force is
supposed to have enough influence to break the L-S cou-
pling and hence, the applicability of the SU(3) formalism.

A way to check the possible survival of SU(3) fea-
tures in heavier regions is to analyze the E2 transitions,
given the specificity of the quadrupole operator for the
quadrupole-quadrupole interaction, which is proportional
to a Casimir operator of the SU(3) group of symmetries.

Since the first applications of the SU(3) picture to nu-
clear spectroscopy [2] many authors have dealt with the
analysis of the E2 transitions in relation to that frame-
work. In most cases the calculations implied the solution
in bases classified by the irreps of the SU(3) group of

a e-mail: lenzi@pd.infn.it

schematic or realistic Hamiltonians, which meant, in prac-
tice, departures from the pure SU(3). There are some re-
cent references [3,4] in which this subject is addressed for
even-even nuclei of the sd and pf shells, respectively.

In ref. [3] a quasi-SU(3) truncation scheme is used
in conjunction with a Hamiltonian that includes Nilsson
single-particle, quadrupole-quadrupole, pairing and rotor-
like terms to calculate B(E2) transition strengths.

Relative B(E2) values are obtained in ref. [4] within a
shell model calculation with a realistic Kuo-Brown inter-
action in a full pf space. They compare results obtained
with realistic single-particle splittings and degenerate p
and f shells as well as the predictions for the SU(3) limit.

In the present work we calculate the B(E2) values for
rotational-like structures based on the ground state of a
number of N = Z systems in the sd and pf shells. The
formalism in the pure SU(3) scheme, approximate treat-
ments and the calculations that support the method are
introduced in sect. 2. The results are shown in sect. 3 and
compared with data. The final remarks are given in sect. 4.

2 Formulas and method

2.1 The pure SU(3) scheme

The quadratic Casimir operators of SU(3) can be writ-
ten in terms of a quadrupole-quadrupole and a rotational



342 The European Physical Journal A

term,
C2 = (Q ·Q) + 3(L · L), (1)

which implies that in a basis classified by SU(3) ⊃ R(3),
a Hamiltonian with a two-body term proportional to a
quadrupole-quadrupole interaction,

H = Hsp + κ(Q ·Q), (2)

results diagonal. Since the E2 transition operator is pro-
portional to Q, i.e.,

M(E2) =
1

2
(eπ + eν)

h̄

Mω

√
5

16π
Q , (3)

and this is one of the generators of SU(3), is therefore nat-
ural to use the E2 transitions as probes of the adequacy of
the use of the irreducible representations of this group for
the classification of the states describing a given nuclear
system.

We calculate the B(E2) values in N = Z nuclei where
we expect that the SU(3) behavior has not been blurred
out by the spin-orbit interaction. That is the case of E2
transitions in the ground-state bands of the even-even
N = Z nuclei 20Ne, 24Mg, 28Si, 44Ti, and 48Cr. We assume
that the yrast band of this nuclei correspond to states be-
longing to the highest orbital symmetry (labelled by the
partition [f ] of the number of nucleons) and the leading
representation (λ, µ) of the SU(3) group, namely,

20Ne: [4](8, 0)
24Mg: [44](8, 4)
28Si: [444](12, 0)
44Ti: [4](12, 0)
48Cr: [44](16, 4).

The classification of states according to irreducible rep-
resentations of the symmetric and SU(3) Groups is ex-
plained in ref. [1]. In particular, tables 1 and 2 of that
reference contain the classification of states in the N = 2
and N = 3 oscillator shell. We give more details of the
significance of this classification in sect. 2.4.

All members of a [f ](λ, µ)-band are built from the
same intrinsic structure. The intrinsic (χ) and laboratory
(ψ) functions are related by

ψ((λ, µ)KLM) =

(2L+ 1)√
A((λ, µ)KLK)

∫
DL
MK(Ω)χΩ(λ, µ)dΩ (4)

and its inverse,

χ(λ, µ) =
∑

K,L

√
A((λ, µ)KLK)ψ((λ, µ)KLK). (5)

The SU(3) normalization constant can be cast as

A((λ, µ)KLK ′) =
(2L+ 1)

8π2

µ∑

n=0

(−1)nµ!
n!(µ− n)!

×
{∫ 2π

0

dα eiK
′α sinαn cosαµ−n

}

×
{∫ 2π

0

dγ eiKγ sin γn cos γµ−n
}

×
{∫ +1

−1

d cosβ cosβλ+ndLK′,K(β)

}
. (6)

The quadrupole operator, being a generator of SU(3),
does not connect states belonging to different represen-
tations of the group. The matrix element 〈(λ, µ)K ′L′‖Q‖
(λ, µ)KL〉, entering in the calculation of the B(E2) val-
ues, can be obtained by resorting to tables [5] or computer
codes [6] that give SU(3) ⊃ R(3) Wigner coefficients. For
the sake of self-contention, we prefer to use the simple
original SU(3) expressions [7]. The quadrupole matrix el-
ement is given by

〈(λ, µ)K ′L′‖Q‖(λ, µ)KL〉 = 2L+ 1√
2L′ + 1

×
[
〈LK20|L′K〉

√
A((λ, µ)KL′K)

A((λ, µ)KLK)
〈(λ, µ)L′K ′|(λ, µ)L′K〉

×
{
2λ+ µ+ 1

2 (L
′(L′ + 1) + 6− L(L+ 1))

−2µ− λ− 1
2 (L

′(L′ + 1) + 6− L(L+ 1))

}

+
∑

±

〈LK2± 2|L′K ± 2〉
√

3(µ∓K)(µ±K + 2)

2

× b((λ, µ)K)

b((λ, µ)K ± 2)

√
A((λ, µ)K ± 2L′K ± 2)

A((λ, µ)KLK)

×〈(λ, µ)L′K ′|(λ, µ)L′K ± 2〉
]

(7)

(in the curly bracket, the upper value applies to λ ≥ µ and
the lower to λ < µ). The coefficients b((λ, µ)K) transform
from the Cartesian to the K-defined basis. We remind
that the SU(3) wave functions for different K’s are not
orthogonal and the overlaps are calculated as

〈(λ, µ)LK ′|(λ, µ)LK〉 =
A((λ, µ)KLK ′)√

A((λ, µ)KLK)A((λ, µ)K ′LK ′)
. (8)

With the above formulae the values of B(E2) in e2 fm4

are obtained.

2.2 Axial alignment and rigid rotation

If all the quanta were to align along one intrinsic axis (i.e.,
the z-axis) the SU(3) states of a nucleus with k valence

particles would have (λ̃, µ̃) = (kN, 0) (N : shell quantum
number). In general, charge and spin restrict the num-
ber of particles that can align quanta in a given direc-
tion, which implies λ ≤ λ̃ and —depending of the particle
number— µ 6= 0. In the case of the nuclei of our interest,
i.e. 20Ne, 24Mg, 28Si, 44Ti, and 48Cr, no restriction on
the number of quanta in the symmetry axis would imply
(λ̃, µ̃) equal to (8, 0), (16, 0), (24, 0), (12, 0), and (24, 0),
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instead of the respective (8, 0), (8, 4), (12, 0), (12, 0), and
(16, 4) (for four valence nucleons (20Ne and 44Ti) the val-
ues of (λ, µ) remain the same). For the above “stretched
SU(3)” states the normalization constant of eq. (6) can
be calculated to be

A((λ̃, µ̃ = 0),K = 0, L,K ′ = 0) =

2(L−λ̃)/2λ̃!(
λ̃−L

2

)
!(λ̃+ L+ 1)!!

. (9)

Taking this expression into eq. (7) we can obtain the cor-
responding E2 matrix element for stretched states. In the
case of an E2 transition J + 2→ J results in

〈(λ̃, 0)0 (J − 2)‖Q‖(λ̃, 0)0J〉 = 2〈J 0 2 0|(J − 2) 0〉

×
√

(2J + 1)(λ̃+ J + 1)(λ̃− J + 2). (10)

This expression has been related to the SU(3) symmetry
in ref. [8] and is valid for boson approximations. In order to
appreciate the effects of the full consideration of antisym-
metry we compare the results of this “stretched SU(3)”
(eq. (10)) with those obtained for a fermionic SU(3) using
eq. (7).

For λ→∞ the SU(3) intrinsic wave function is totally
peaked in the z-direction and the wave function (eq. (4))
becomes that of a rigid rotor (ψ((λ, µ)KLM) ∝ χ DL

MK).
In this case the quadrupole transition matrix element is

〈0 (J−2)‖Q‖0 J〉 = 〈J 0 2 0|(J−2) 0〉
√

(2J + 1)Q0, (11)

with Q0 an overall constant independent of J .
In sect. 4 we discuss the differences that eqs. (7), (10)

and (11) make in the behavior of the B(E2)’s as functions
of nuclear spins, specially for large values of J .

2.3 Mixing of SU(3) configurations

As can be seen from eq. (1), in states classified by the
irreps of the SU(3) group (labelled by (λ, µ)), the ener-
gies corresponding to a quadrupole-quadrupole Hamilto-
nian and no single-particle splitting depend, apart from
the rotational L(L+ 1) term, solely on the eigenvalues of
the Casimir operator C2, which is expressed in terms of
the values of λ and µ as

〈C2〉 = 4
(
λ2 + µ2 + λµ+ 3λ+ 3µ

)
. (12)

From this expression some (λ, µ) or K degeneracies
result in the case of the nuclei under consideration. The
interactions left out of the simple model Hamiltonian indi-
cated above are responsible for the splitting of the levels
and mix the degenerate configurations. A calculation of
the mixing of configurations by solving the residual force
is outside the scope of the present paper. Nevertheless,
considering the importance that such a mixing could have
in the final result we make some schematic assumptions to
take it into account. Two different sources of degeneracies
are considered in the following. In both cases we assume
that the mixing of the SU(3) configurations stems from
the mixing of the intrinsic states χ(λ, µ).

2.3.1 (λ, µ) degeneracy

In the case of 28Si there are two representations [(12, 0)
and (0, 12)] that come lowest in energy since they have the
same eigenvalue of C2. We can then expect that the in-
trinsic state on which the yrast band is built would result
a combination of the two representations. The calculation
of the B(E2) values in the SU(3) scheme will, therefore,
imply the determination of the mixture of those two con-
figurations.

2.3.2 K degeneracy

In the SU(3) scheme, if µ > 0, there are more than one K
state belonging to the same irrep, K = µ, µ−2, . . . , 1 or 0.
These states are also degenerate, as results from eqs. (1)
and (12). In our case this degeneracy can occur for the
nuclei 24Mg and 48Cr.

In a treatment as in ref. [2], in which any central in-
teraction can be expressed in terms of angular-momentum
operators acting on the intrinsic SU(3) leading states, we
can assume that the K-mixing comes from an L2

+1 +L2
−1

term which can be considered as a perturbation. The re-
sult is a mixing of K = 2 states in the K = 0 ground-state
band (J 6= 0),

Ψ((λ, µ)J,M) ∝ ψ((λ, µ)K = 0, J,M)

+εψ((λ, µ)K = 2, J,M), (13)

where ε does not depend on J . Although calculations with
a realistic force [2] show that the K-mixing, even if small,
increases with the angular momentum J , the use of J-
dependent mixing coefficients in (13), arising from more
general perturbations would mean, within the simple phi-
losophy of the present treatment, the introduction of too
many parameters.

2.4 About the influence of the spin-orbit term

The applicability of the SU(3) formalism depends on the
possibility of neglecting the spin-orbit interaction. For
N = Z even-even nuclei the attractive part of the poten-
tial brings lowest the states of highest orbital symmetries,
which in the case of these nuclei belong to the partitions
[44 . . . 4]. To form an antisymmetric state the spin-isospin
part of the function must belong to the conjugated sym-

metry [ ˜44 . . . 4] for which, since T = 0, it must be S = 01.
For such states the spin-orbit force gives no first-order ef-
fect [2]. The states that can be mixed by the spin-orbit
interaction belong to orbital symmetries [44 . . . 31], which
in first order are well apart in energy from those belonging
to the highest orbital symmetry. Hence, if no spin-orbit
force is active, the states of the yrast band will belong
only to the orbital symmetry [44 . . . 4], or conversely, if
the spin-orbit force is relevant, the wave functions of the

1 A justification of this assumption in terms of group theory
can be found, for example, in refs. [9–11].



344 The European Physical Journal A

states under consideration will have contributions of or-
bital symmetries [4 . . . 31] or lower.

The M1 operator,

M(M1) =

(
3

4π

) 1

2 eh̄

2Mc
(gll + gss) (14)

can be considered specific for the spin-orbit interaction l·s.
We can, therefore, measure the sensibility of neglecting the
spin-orbit part of the nuclear force for the description of
the bands under consideration by assessing the amount of
M1 relating states of these bands to other nearby states
thought to belong to the same [44 . . . 4] orbital symmetry.
In fact, as we will show in the following, we find that all
such M1’s are very small.

We analyze the transitions populating the first 2+
1

states from the second 2+
2 states in the nuclei of inter-

est. To appraise the magnitude of the corresponding value
of B(M1) we compare it to the respective values for tran-
sitions in nearby nuclei for which the spin-orbit term is
expected to be relevant. That is the case of M1 transi-
tions in an adjoining odd-even nucleus relating presumed
single-particle states or M1 transitions in even-even nu-
cleus differing in two nucleons (|N−Z| = 2), for which the
lowest states belong to the orbital symmetry [44 . . . 2] that
allows S = 1 components. The mixing ratios δ(E2/M1)
are also quoted in the cases that are known.

20Ne

20Ne, 2+
2 → 2+

1 :
B(M1;Eγ = 5.787MeV) = 1.0(3) ·10−4 W.u., δ = 8.4+15

−10,

while in 21Ne, 7
2

+ → 5
2

+
:

B(M1;Eγ = 1.396MeV) = 0.145(9) W.u., δ = −0.14(2)
and in 22Ne (the lowest symmetry is [42]), 2+

2 → 2+
1 :

B(M1; Eγ = 3.181MeV) = 1.8(3)·10−2 W.u., δ = −9(2)·
10−2.

24Mg

24Mg, 2+
2 → 2+

1 :
B(M1;Eγ = 2.869MeV) = 7.7 · 10−6 W.u., δ = 23(9),

while in 25Mg, 3
2

+ → 1
2

+
:

B(M1;Eγ = 0.390MeV) = 1.59(6) · 10−2 W.u., δ =
0.13(3),
and in 26Mg (the lowest symmetry is [442]), 2+

2 → 2+
1 :

B(M1; Eγ = 1.130MeV) = 9.7(1.2) · 10−2 W.u., δ =
−0.12(2).

28Si

28Si, 3+ → 2+:
B(M1;Eγ = 4.496MeV) = 2.5(2) · 10−4 W.u. δ =
−0.14(2),
while in 29Si, 3

2

+ → 1
2

+
:

B(M1;Eγ = 1.273MeV) = 3.5(2) · 10−2 W.u., δ =
0.197(9),
and in 30Si (the lowest symmetry is [4442]), 2+

2 → 2+
1 :

B(M1; Eγ = 1.263MeV) = 9.4(9) · 10−2 W.u., δ =
0.18(4).

44Ti

44Ti, 2+
2 → 2+

1 :
B(M1;Eγ = 1.448MeV) = 8(7) · 10−5 W.u., δ = −8+3

−8,

while in 45Ti, 5
2

− → 7
2

−
:

B(M1;Eγ = 0.040MeV) = 2.27(9) · 10−3 W.u., δ =
0.000(25),
and in 46Ti (the lowest symmetry is [42]), 2+

2 → 2+
1 :

B(M1; Eγ = 2.073MeV) = 5.8(9) · 10−3 W.u., δ =
−1.21(14).

48Cr

48Cr: no lifetimes available for transitions feeding the 2+
1 .

3 The results

Figures 1 to 5 show the B(E2) data for transitions within
the ground-state bands in the nuclei 20Ne, 24Mg, 28Si,
44Ti, and 48Cr, respectively. The same figures display the
results of the calculations in the SU(3) scheme and of
the shell model. This latter model has achieved very good
agreement with the spectroscopic data, both in the sd and
pf shells. We will, therefore, use its results as a paragon for
comparison with other model calculations as the present
one. To obtain the shell model B(E2) values we have used
the code ANTOINE [12]. For sd-shell nuclei the USD ef-
fective interaction [13] in the full sd space has been used,
while, for pf -shell nuclei we have adopted the KB3G in-
teraction [14] in the full pf valence space. In the cases of
N = Z nuclei, the sum of the effective charge (eπ + eν)
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Fig. 1. Experimental (Exp) [15], shell model (SM) and SU(3)
B(E2) values as a function of the initial spins for the ground-
state band in 20Ne.
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Fig. 2. Experimental (Exp) [16], shell model (SM), SU(3)
and best fit allowing K-mixing perturbation (SU(3)-f) B(E2)
values as a function of the initial spins for the ground-state
band in 24Mg.
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Fig. 3. Experimental (Exp) [16], shell model (SM), SU(3)
and best fit allowing K-mixing perturbation (SU(3)-f) B(E2)
values as a function of the initial spins for the ground-state
band in 28Si.

enters as an overall scaling factor in the calculation of
B(E2). For the effective charges we have used eπ = 1.5
and eν = 0.5 in both shells. In shell model calculations
these values reproduce well the spectroscopy of f7/2-shell
nuclei while in the sd-shell, nuclear-mass–dependent val-
ues produce better agreement.

20Ne: this is a nucleus where SU(3) is known to work prop-
erly. In fact, fig. 1 shows a very good agreement with the
data of the SU(3) predictions. Although the shell model
reproduces the behavior of the values of B(E2) as function
of the angular momenta, the B(E2) values are underesti-
mated. To get a better agreement with data, the effective
charges used in the shell model calculation should be in-
creased by 10–15%.
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Fig. 4. Experimental (Exp) [17], shell model (SM) and SU(3)
B(E2) values as a function of the initial spins for the ground-
state band in 44Ti.
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Fig. 5. Experimental (Exp) [18], shell model (SM), SU(3)
and best fit allowing K-mixing perturbation (SU(3)-f) B(E2)
values as a function of the initial spins for the ground-state
band in 48Cr.

24Mg: the SU(3) formalism reproduces properly the mag-
nitude of the three experimental points in fig. 2. Allowing
the action of a K-mixing perturbation (sect. 2.3.2) does
not improve greatly the quality of the agreement with the
data, which is implied by the fact that the best fit is ob-
tained for a very small perturbation (ε = 0.03). As in the
case of 20Ne an increase of the effective charges could allow
a better shell model description of the data.

28Si: the calculation of the B(E2) values for only one ir-
rep of SU(3), corresponding to the lowest energies (either
(12, 0) or (0, 12)) overestimates the transition strengths in
fig. 3. From sect. 2.3.1 we can expect a mixing of the
“oblate”[(0, 12)] and “prolate”[(12, 0)] SU(3) configura-
tions. Experimental evidence of shape coexistence in this
nucleus [19] supports this assumption. The quadrupole re-
duced matrix elements corresponding to the two (λ, µ)
representations are equal and of opposite sign, therefore,
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they will contribute destructively to the B(E2) value, a
fact that results crucial to get the right magnitude. A
general interaction can mix two (λ, µ) configurations, pro-

vided that their eigenvalues of Q0 and (Q2 + Q−2)/
√
6

differ in less than 6N and 4N , respectively [2]. In the case
of 28Si, where N = 2, the states belonging to the (12, 0)
and (0, 12) representations cannot be directly connected,
since the difference of the second of the above eigenval-
ues is 12 > 8. The amount of admixture (19%) needed
to achieve the best fit can be justified as a second-order
process facilitated by the degeneracy of the zeroth-order
energies. This mixing, as well, is the responsible of the
sizable E2 transitions from the excited 0+ states to the
yrast 2+ state. Using these experimental B(E2) values, it
is straightforward to obtain a mixing which is consistent
with that of the best fit. To have a better shell model de-
scription of the data, smaller effective charges would be
needed.

44Ti: in this case we cannot draw conclusions about the
comparative quality of the results either of the SU(3) or of
the shell model calculations: although both give the right
order of magnitude, they fail to reproduce the abrupt fall
for the 6+ → 4+ transition (see fig. 4). It is important to
note that the first two transitions 2+ → 0+ and 4+ → 2+

have been recently measured [17], while there is not new
data for the transition 6+ → 4+.

48Cr: this is a nucleus where the large-scale shell model has
been particularly successful in reproducing the spectro-
scopic data. The SU(3) results, for a pure (λ, µ) = (16, 4),
K = 0 configuration overestimate the data in fig. 5. A sen-
sible fit is achieved by mixing the K = 2 band, along the
line of sect. 2.3.2, with ε = 0.19.

4 Final remarks

We have been able to obtain a rather good fit to the B(E2)
experimental values for sd and pf nuclei using the SU(3)
formalism with the same effective charges in all cases.

The above indication in favor of considering, based on
such a simple picture, the SU(3) as a good symmetry for
these nuclei contradicts —or better, concludes differently
than— analyses mainly aimed at reproducing the energy
spectra. The explanation can be found in the fact that,
for the N = Z even-even nuclei, the nuclear states are
strongly dominated by the Q ·Q component of the inter-
action (see, for example, ref. [20]) while energies may de-
pend on subtle components of the interaction or on terms
that do not modify the E2 transition rates.

We note that not only the increase of the B(E2) val-
ues with spin toward a maximum but also the subsequent
decrease to very small values with further increasing spin
is reproduced rather well. Although the SU(3) is the right
microscopic interpretation of the nuclear rotations, its re-
sults differ from a stretched picture (eq. (10)) and from a
rigid rotator (eq. (11)). For the sake of comparison, in fig. 6
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SU(3) Str.

Rig. Rot.

Fig. 6. B(E2) values as a function of the initial spins
for SU(3)((λ, µ) = (16, 4)) (full triangles), a stretched
SU(3)((λ̃, µ̃) = (24, 0)) (full circles), and a rigid rotor (open
squares). Values are normalized to the first SU(3) value. The
parameters (λ, µ) (or (λ̃, µ̃)) have been chosen to correspond
to 48Cr.

we show the results corresponding to SU(3), a stretched
SU(3), and a rigid rotor.

The appropriate behavior of SU(3) in reproducing the
data tendency as a function of the spin is associated to its
right consideration of the interplay of the nuclear-states
collectivity, the full symmetries and the finite size of the
shells.

Even though the fit is best for the lighter of the con-
sidered nuclei, 20Ne, nevertheless we obtain good results
for the pf nuclei despite the a priori large single-particle
splitting operating in this major shell.

We confirm therefore the hypothesis that for those
states for which an L-S coupling is valid, that is, in which
the effect of the spin-orbit results nullified by symmetry
reasons, the mixing of configurations that sustains irreps
of SU(3) gives a good description of the states of the yrast
band, as regards to quadrupole transitions. We show that
this is the case in g.s. band-like structures of even-even
N = Z nuclei of the sd and pf shells.

The authors would like to thank A. Vitturi for fruitful and
interesting discussions. This work was partially supported by
PIP 02618 of CONICET, Argentina.
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